Testing stellar flares with fast photometry

Krisztián Vida
Konkoly Observatory, Budapest, Hungary

Motivation

High resolution photometry can be crucial for fast transients - e.g. determining flare parameters: energy estimation depends heavily on sampling!

Flare analysis with machine learning on Kepler light curves: energy estimation of long cadence events can be nasty...

Motivation

There could be several smaller events (microflares) that we are missing, that we see e.g. on the Sun

OCELOT EMCCD

Specifications

- Sensor: e2V CCD201-20
- Sensor size: 1024*1024
- Pixel size: $13 \mu \mathrm{~m}$ * $13 \mu \mathrm{~m}$
- Image area: 13.3 mm * 13.3 mm
- Active area pixel well depth: 80000 electron (typ.)
- Gain regeister pixel well depth: 730000 eiestron (typ.)
- Max readout rate: 10 MHz
- Frame rates (full frame): 8.9 frames per sec

Read noise (10 MHz): 1 to 47 electron

- Peak quantum eificiency (575 nm, typ.): 92.5%
- Cooling: thermoelectric + liquid, $-90^{\circ} \mathrm{C}$

we could test what ARIEL would see...
- 1 m telescope at Piszkéstető Observatory + OCELOT EMCCD
- 3 weeks of observing time (10 usable nights)
- 600.000 data points
. recap: first run (before the Dublin meeting) was done with suboptimal targets due scheduling + weather + moon position
- AD Leo (B~10m, M3V)
- B filter (target will be fainter, but larger flare amplitudes)
- 0.3s exposures - ~ 0 readout time

roughly real-time animation of data aquisition

What do we gain/lose with longer exposures?

data rebinned to 1 and 3 -minute cadence

for this event we get the same energy (within few \%) up to 4 min cadence!
$2.0-1.5$

What did we learn?

- For the few observed events $0.5-5$ min cadence is enough
- Surprisingly the timing seemed not that crucial in energy determination BUT
- Small events were not detected due to higher noise level (telescope/atmosphere/camera limitations)

