Source: Mark Garlick/Science Photo Library

Catching a glimpse of the radio light from the earliest AGN jets

12 May 2022

Krisztina Perger

Konkoly Observatory

KONKOLY SEMINAR

Active galactic nuclei – AGNs

- compact regions
- SMBH accretion
- luminous through the entire
 - EM regime

- radio jets (synchrotron emission)
- classification: radio emission

12 May 2022

and inclination

blazar

(Perger 2020, doi: 10.15476/ELTE.2020.161)

AGNs at high redshifts

Open questions:

- 'too many blazars' problem
- relationship between AGNs and SF
- formation of the first SMBHs
- cosmological evolution of AGNs
- AGN activity cycle

Very long baseline interferometry (VLBI)

source:spacegeodesy.go.jp

KONKOLY SEMINAR	K. Perger	12 May 2022	5/24

- spatial resolution better than mas
- VLBI array baselines \sim Earth diameter
- space-VLBI (RadioAstron; future: THEZA)
- correlation of data
- fringe-fitting, amplitude and phase calibration in AIPS or CASA
- amplitude and phase self-calibration, imaging, and model fitting (circular/elliptical Gaussian) with DIFMAP

Catalogue of $z \ge 4$ AGNs

(Perger 2020, doi: 10.15476/ELTE.2020.161)

• 3179 AGNs Right ascension

- FIRST, NVSS, and/or VLASS detection: 222 (70 VLBI)
- not detected (FIRST coverage): 2442
- outside FIRST/NVSS coverage: 460

Revealing sub-mJy radio emission by image stacking

7/24

- Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey
- low-power AGNs: not well-known \rightarrow stacking
- image noise decreases, 'real' radio emission is revealed
- 2229 AGN in FIRST coverage but no detection
- mean and median stacking
- what is the origin?

Median

SNR (4,7,5,4,11)

10.0

0.0

KONKOLY SEMINAR	K. Perger	12 May 2022	9/24
Flux densities			

- 2D circular Gaussian model
- unresolved point source
- 52 μ Jy (after correction)

- bit higher than low-z jets
- radio-AGN in the sample!

- point source: central pixels
- co-added images: 77 mJy
- assumption: all same

characteristic power

- spectral indices:
 - $-0.5 \geq \alpha \geq -1$
- 1.4 GHz radio power:

 $2.9-6.8\times 10^{24}~{\rm W~Hz^{-1}}$

What is the origin of the radio emission?

AGN activity

- synchrotron emission by radio jets
- moderately radio-loud AGN
- most luminous AGN:
 - $10^{24} \mathrm{~W~Hz^{-1}}$ to

 $10^{26}~\mathrm{W}~\mathrm{Hz}^{-1}$

• however: upper limits!

host galaxy SF

- SF dominance is below $100 \ \mu$ Jy
- radio-to-SFR $400 4200 \text{ M}_{\odot} \text{ yr}^{-1}$
- high-z quasar hosts with $1000~\mbox{M}_{\odot}~\mbox{yr}^{-1}$

Origin of radio emission – MIR analisis

(Perger 2020, doi: 10.15476/ELTE.2020.161)

- MIR flux densities from $P_{1.4\text{GHz}}$: $S_{24\mu\text{m}} = 30 50 \text{ mJy}$
- WISE: detection at 124 positions; 2 11 mJy
- radio excess in the stacked sample \rightarrow AGN contamination

Stacking of VLASS 3 GHz images – preliminary results

- better resolution and thermal sensitivity
- ~ 900 additonal radio non-detected AGN in my catalogue with available maps
- 2nd epoch VLASS observations soon concluded

KONKOLY SEMINAR	K. Perger	12 May 2022	13/24

Study of individual AGNs

J2134-0419

- z = 4.334
- compact: FIRST/NVSS
- VLA A observations and two epochs of EVN observations available
- X-ray study by Sbarrato et al. 2015

J0909+0354

- z = 3.29
- compact: FIRST/NVSS
- VLA A: double
- Chandra: triple!
- available global VLBI
- new EVN observations planned

(Perger et al., 2018)

- three components
- $\bullet~311.5\,\pm\,6.8$ mJy.
- jet visible up to ${\sim}35~\rm kpc$

- two components
- 224.8 \pm 6.2 mJy
- jet 'resolved'

- *S*_{1999,total} =136.1±5.9 mJy
- $S_{2015,\text{total}} = 185.5 \pm 12.0 \text{ mJy}$
- $\sim 30\%$ core variability
- jet bending $\sim 60^\circ {\rm \ pc}{\rightarrow} {\rm \ kpc}$
- component proper motion:

 $\mu = \! 0.035 \!\pm\! 0.023 ~\rm mas~yr^{-1}$

 $\beta_a = (4.1 \pm 2.7) c$

K. Perger

J2134-0419

Physical parameters

• brightness temperature:

 $T_{b,1999} = (1.5{\pm}0.2)\,\times\,10^{11}~\text{K}$

 $T_{b,2015} = (2.5{\pm}0.4)\,\times\,10^{11}~\text{K}$

- Doppler factor:
 - $3 \le \delta_{1999} \le 5$
 - $5 \le \delta_{2015} \le 8.3$

- bulk Lorentz factor:
 - $4.3 \leq \Gamma_{1999} \leq 4.5$
 - $4.3 \leq \Gamma_{2015} \leq 5.2$
- viewing angle:

 $11.4^{\circ} \le \theta_{1999} \le 18.3^{\circ}$

 $5.5^{\circ} \le \theta_{2015} \le 11.4^{\circ}$

KONKOLY SEMINAR	K. Perger	12 May 2022	17/24
Summary		J2134-	-0419

- flux density variability
- helical jet (60° bending)
- high brightness temperatures
- superluminal motion

- marginally lower bulk Lorentz factor than from SED
- marginally higher viewing angles

J2134–0419 is a blazar. The jet component proper motion is $\mu = 0.035 \pm 0.023$ mas yr⁻¹, and is in agreement with the prediction of cosmological models.

⁽Perger et al., 2021)

Legacy Surveys / D. Lang (Perimeter Institute)

J0909+0354

(Perger et al., 2021)

J0909+0354

Parsec-scale structure

Detections

- core: radio MIR optical X-ray
- NNW: radio MIR X-ray
- NE: MIR optical X-ray

Spectral properties

- flat core, outward steepening
- variability in radio and X-ray

Structure

- \sim 250 pc jet towards NNW (at \sim 17 kpc)
- $\sim 30^\circ$ bending pc—kpc
- X-ray at kpc: core–NNW jet, core–NE no jet
- possible connection: MIR

J0909+0354 is a blazar. NNW is a hotspot, NE is not a jet component, but might be in physical connection with the system.

Collaborators:

S. Frey, K. É. Gabányi, M. Krezinger, L. V. Tóth, T. An, S. Britzen,
H-M. Cao, D. Cseh, J. Dennett-Thorpe, L. I. Gurvits, I. Hook, X. Hong, Z.
Paragi, S. Pintér, R. Schilizzi, D. Schwartz, J. Yang, Y. Zhang

K. Perger

12 May 2022

24/24

Stay tuned for new EHT results at 15^{00} CET

Event Horizon Telescope collaboration to announce groundbreaking Milky Way results on May 12th, 2022, at 13:00 UT

Vajon mit láthatott a különleges, világméretű rádióteleszkóp-hálózat, az Eseményhorizont Távcső? (Facebook live)

Press Conference at ESO on new Milky Way results from the EHT team, followed by a public Q&A event (Youtube)