Connecting Hydrodynamic Simulations of Planet Formation with Observations

Judit Szulagyi

Professor of Computational Astrophysics ETH Zurich (Switzerland)

https://szulagyi-group.ethz.ch/

European Research Council Established by the European Commission INTRODUCTION

Density model

This simulation & video: Judit Szulagy Code: JUPITER (Szulagyi et al. 2016)

Definition

- Circumplanetary disk: gaseous disk around a planet, formed within the planet formation process (not Brown Dwarf Disks!). Disk within a disk. Fed by the circumstellar disk.
- Circumplanetary debris disk: e.g. end result of planet-planet collision; but it could be evolved gaseous CPD

Importance of circumplanetary disks

- Planet-formation
- Satellite-formation
- Composition of planets + moons

density_1

-1.149e+01

14.506

-17.523

-20.539

-2.356e+01

• Observation of forming planets

Meridional circulation

Szulagyi et al. 2014, Fung & Chiang 2016, Observed by Teague et al. 2019 (Nature)

Judit Szulagyi

Temperature, Shock-front

- Temperature is high in forming planet vicinity
- Accretion shock is on the CPD, not on the planet!!!

Szulagyi et al. 2016, Szulagyi & Mordasini 2017, Szulagyi & Ercolano 2020

Circumplanetary Envelope / Disk

Atmospheres/gaseous envelopes

Planetary Temperature

Opacity

Satellitesystems

Planetary Mass

The ways a planet can have (a) moon(s)

- Capture a moon (e.g. Phobos & Deimos of Mars, Triton of Neptune)
- 2) Planet-planet collision: the Moon of Earth
- 3) Formation in a circumplanetary disk

EXOMOONS

Second moon discovery outside the Solar System

- Kepler 1708b-i, a moon 5,500 light-years from Earth
 - Kipping et al. 2022, Nature Astronomy
 - 4 Jupiter-mass planet at 1.6 AU + 2.6 Earthradii moon

Why should we care about moons?

- Most habitable places in the Solar System after Earth: Europa, Enceladus
 - Often have under-surface water-oceans
 - Almost all of them 50% of water ice due to their formation process → likely the case for moons around exoplanets as well
- More numerous than planets

Observability of Forming Planets and their Circumplanetary Disks

I. DETECTING FORMING PLANETS WITH ALMA

Sub-mm / Radio

Szulagyi et al. 2018a

2) RADMC3D (wavelength dependent radiative 1) Radiative hydro transfer to make intensity images) 440 microns - HD100_Jup 1000 800 600 400 156 100 200 X-Axis (x10^12) 400 0 200 600 800 Ζ 100 150 Mock Observation on B9 with C43-7 0.016 673.066 GHz 0.014 150 0.012 100 0.01 50 3) Beam Pixels 8×10 0 convolution/interferometry 6×10⁻³ (with CASA) -50 4×10^{-3} -100 2×10^{-3} -150-150-5050 100 150 0

Pixels

1000

Table 1. Mock Observations on the different ALMA Bands of the 3 Jupiter-mass hydro-simulation

Szulagyi et al. 2018a

Table 4. Mock continuum observations for various planet masses in ALMA Band 9 (440 microns) simulations

Szulagyi et al. 2018a

First possible detections

June, 2019

Predictions: Szulagyi et al. 2018a

Isella et al. 2019 –

Observability of Forming Planets and their Circumplanetary Disks

II. NEAR-IR/MID-IR

NaCo / ERIS (VLT)

Szulagyi et al. 2019

4

Ĕ

÷

- Comparing with planet evolution models (hot-start, cold-start)
- The brightness of the planet is much lower than even the coldstart models <= extinction
- Brightness does not scale with the planet mass...
- CPD+planet is always significantly brighter than the planet
- Take home message: the observed brightness cannot be used to estimate the planet mass (in the formation phase)

Extinction!

SEDs

Which wavelength is the best to detect the forming planet?

Which wavelength is the best to detect the forming planet?

Christiaens et al. 2019

Observability of Forming Planets and their Circumplanetary Disks

III. SCATTERED LIGHT + POLARIZATION

SPHERE / GPI

Szulagyi & Garufi 2021

J band I

ΡΙ

10 M_{jup}

0.5 (· 10⁻⁹ Jy)

1

-1 0 +1 (· 10⁻¹⁰ Jy)

5 M_{jup}

1 M_{jup}

2.5 (∙ 10⁻⁹ Jy)

5

0.5 (⋅ 10⁻⁹ Jy) 0

1 0

0.5 (· 10⁻⁹ Jy)

0

1

J ban	d I	PI	Qφ	Uφ	Q₀ U₀
10 M _{jup}					
5 Mjup	6				
1 M _{jup}	0				
1 M _{sat}	0				
i=60°	0 2.5 5 (· 10 ⁹ Jy)	0 0.5 1 (· 10 ⁻⁹ Jy)	0 0.5 1 (· 10 ⁻⁹ Jy)	0 0.5 1 (· 10 ⁻⁹ Jy)	-1 0 +1 (· 10 ⁻¹⁰ Jy)

Observability of Forming Planets and their Circumplanetary Disks

IV. HYDROGEN RECOMBINATION LINES

H-alpha, Pa-beta, Br-gamma

H-alpha, Pa-beta, Br-gamma fluxes

- Why these? accretion tracer lines (luminosity ∝ accretion rate)
- In the past, only determined for stars (T Tauri formula was used for planets)
- Hydrogen ionization temperature > 10'000 K
- Easily absorbed extinction
- Variability?

Observations :

- LkCa15b (Sallum et al. 2015)
- **PDS70b** (Wagner et al. 2018, Haffert et al. 2019)

Accretion Shock

Temperature map – zoom to planet

Accretion Shock – Ionization

H-alpha, Pa-beta, Br-gamma fluxes

- Self-consistently calculated the line fluxes from ionization rates with a photoionization code
- Self-consistently calculated extinction huge problem for detection
- Only lines from planets ≥10 Jupiter-mass can be detected with current instrumentation & realistic opacities
- This explains the very low detection rate of H-alpha from forming planets from observations
- All detectable flux comes from the CPD, not from the planet → these measure CPD accretion rate, not planet accretion rate
- Variability: up to 58%
 - due to various extinction (column density), variable accretion rate

Extinction is a problem

$3 \ M_{_{Jup}} \ planet$

Summary of Observational Predictions

Wavelength/method/instrument

- Sub-mm/radio
 - Szulagyi et al. 2018a
- Near/mid IR

X

X

- Szulagyi et al. 2019
- Polarized Scattered Light
 - Szulagyi & Garufi 2021
- Hydrogen Recombination Lines (H-alpha etc.)
 - Szulagyi & Ercolano 2020

: even Saturn-mass (potentially below that): only 10 Jupiter-mass planets or larger

Take Home Message

- With most traditional methods, only heavy forming planets (≥10 Mjup) can be observed, but ALMA could do smaller mass planets too (≤Saturn)
- Observed brightness cannot be used to infer planetary masses on any wavelength – we detect the CPD, not the planet
 - Results depend on density (and temperature) of the CPDs
 - extinction is a big problem

Fabian Binkert PhD student

3D DUST+GAS SIMULATIONS

Binkert, Szulagyi et al. 2021 - arXiv:2103.10177 Szulagyi, Binkert et al. 2021 - arXiv:2103.12128

Szulagyi

Dust Density (g/cm^3)

4.200e-22 le-20 le-19 le-18 le-17 le-16 le-15 le-14 le-13 le-12 7.698e-11

Szulagyi, Binkert et al. 2021

Binkert, Szulagyi et al. 2021

Vertical slices of dust density

Meridional circulation of Dust – Delivery to the CPD

Szulagyi, Binkert et al. 2021

ALMA mocks

- multiple gaps for Saturn mass planets or larger

- Neptune or smaller planets: spiral wakes = asymmetrical ring

0.8

F/F_{max}

Binkert, Szulagyi et al. 2021

Optically thick below the contour lines \rightarrow hidden dust mass

Comparison between the disk mass from hydro vs. disk mass from ALMA mocks

Disk masses from ALMA observations are underestimated by a factor of 2-10x

Take Home Message

- If planets present in the disk \rightarrow stir up the dust
 - Due to meridional circulation by the spiral wakes of the planet
- Disk masses from ALMA observations are greatly underestimated (2-10x) due to this dust stirring
- Meridional circulation bridges over the gap, and sufficiently deliver even larger solids to the CPD \rightarrow moon formation
 - Pebble isolation mass is not a problem